
1. Abstract

Achieving diffraction-limited performance from extreme
ultraviolet (EUV) optical systems requires the development
of interferometry with sub-angstrom accuracy. At-wave-
length EUV testing with a phase-shifting point diffraction
interferometer is being developed for the measurement of
lithographic quality, multiple-element, aspherical optical
systems. Recent demonstrations of high-accuracy EUV
interferometry, and progress in this field, have required
detailed analysis and in situ calibration of systematic errors
generated by the measurement geometry. The framework of
this detailed analysis is presented along with recent
measurements and a discussion of concomitant metrologies
made available by the interferometer.
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2. Introduction

EUV lithography is a promising and viable candidate for
circuit fabrication with 0.1-micron critical dimension and
smaller. To achieve this end at 11 to 13-nm wavelength,
nearly diffraction-limited, multilayer-coated, near-normal-
incidence reflective optical systems with 0.1 numerical
aperture (NA) are required [1]. The suggested wavefront
aberration tolerance for these sophisticated, all-reflective
systems, which are composed of multiple aspherical ele-
ments, is only 0.02 waves rms, or 0.27 nm [1]. This places
extremely high demands on the fabrication of EUV mirror
substrates and multilayer coatings, and even higher demands
on the metrology tools required to characterize them.

The EUV wavefront is determined by the geometric
figure of the mirror surfaces and by the properties of the
multilayer coatings, which are deposited across mirror areas
covering many square inches. While advanced visible-light
interferometric techniques possessing the required measure-
ment accuracy are being developed [3, 4], at-wavelength
EUV testing is the most direct probe of the sensitive reso-
nance properties of reflective multilayer coatings. The need
for at-wavelength metrology has motivated the development
of high-accuracy EUV wavefront-measuring interferometry.

Since modern optical imaging systems often incorpo-
rate aspherical elements, opportunities for EUV single-
element or convex-element testing are extraordinarily chal-
lenging. In reflection, each micron of aspherical departure
represents more than 150 EUV wavelengths. As a result
EUV interferometry is presently restricted to system-level
wavefront measurement.

Several different EUV interferometers have been
developed over the past decade. Foucault [5] and Ronchi [6]
testing for alignment of EUV optics have been demonstrated
using both synchrotron [7] and laser-plasma [8] light
sources. Other significant research includes refinement of
the lateral shearing interferometer [9], and the point-
diffraction interferometer (PDI) [10, 11, 12].

The most successful of the EUV interferometers to date
has been the recently developed phase-shifting point
diffraction interferometer (PS/PDI), first proposed by
Medecki [13]. While the PS/PDI preserves the advantages
of the PDI, using pinhole diffraction to generate a spherical
reference wavefront in the image plane, it represents a
significant step forward. With substantially higher efficiency
and the introduction of phase-shifting capability, the
PS/PDI has become one of the most accurate system-level
measurement tools of its kind. Its reference wavefront accu-
racy has been demonstrated as high as 0.04 nm rms in a
numerical aperture of 0.08, well beyond the present 
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requirements for EUV optical system metrology.
Successful operation of an interferometer for which

angstrom-scale errors are unacceptably large requires
diligent attention to minute details of the measurement.
This article is devoted to attaining the highest possible
measurement accuracy with the PS/PDI. To that end, the
many free parameters of the PS/PDI design are investigated,
including discussion of the most significant design com-
promises. Accompanying the qualitative design discussions
is a detailed study of the most significant systematic errors
sources affecting the PS/PDI. A mathematical framework is
developed in which these errors are translated into the
familiar Zernike polynomial representation, commonly
used in the description of optical aberrations.

These theoretical studies have fed back into the experi-
mental methods, improving the quality and reliability of the
measurements. Recent EUV PS/PDI optical system mea-
surements are presented along with a discussion of related
measurement capabilities and future directions for research.

3. The phase-shifting point diffraction interferometer

The PS/PDI was designed specifically to measure EUV
imaging systems with sub-nanometer accuracy, yet its sim-
ple design and operating principles give it potential for
application in a broad range of circumstances. The PS/PDI
relies on pinhole diffraction to produce high-accuracy
spherical wavefronts, overcoming the unavailability of ade-
quate reference surfaces. A common-path design allows it
to operate with illumination sources of limited temporal
coherence.

As shown in Fig. 1, the PS/PDI uses a pair of pinholes
placed at conjugate object and image points to produce
spherical reference wavefronts. The object pinhole spatially
filters the incident light to produce a spherical illuminating
beam. Via transmission the illuminating beam acquires the
aberrations of the test optic and becomes the test beam. The
test beam comes to focus in the image plane and then

propagates to reach the detector, which is placed signifi-
cantly beyond the image plane.

To create the reference beam, a small-angle beam
splitter is placed before (or after) the test optic; a relatively
coarse transmission grating makes a convenient beam
splitter for this application. The grating produces multiple
copies of the test beam, focused in the image plane with a
small lateral separation. A patterned opaque membrane in
the image plane is used to selectively transmit and block the
focused beams. One of these beams is transmitted through
a relatively large “window” and becomes the test beam. A
second beam is brought to focus on a nearby pinhole spatial
filter called the reference pinhole. The reference pinhole is
fabricated smaller than the diffraction-limited resolution of
the test optical system to produce a second spherical refer-
ence wavefront. The two beams propagate to a mixing
plane, where their coherent interference is recorded by a
suitable array detector.

3.1 Efficiency
Due to the limited brightness of available EUV sources, an
interferometer’s efficiency is an important design consider-
ation. Efficiency can be defined as the relative fraction of
the illuminating light that reaches the detector, including or
excluding transmission through the test optic. Efficiency
determines detector exposure times during both alignment
and measurement and is therefore integral to the operation
of the interferometer.

Pinhole spatial filtering plays the dominant role in
setting the efficiency of the PS/PDI. Above all other factors,
the pinholes dictate the accuracy and precision of the
measurement. Smaller pinholes generate higher-quality
reference beams at the expense of transmission. Coupled to
the focusing quality of the test optic, pinhole size selection
mandates a compromise between throughput and accuracy. 

While efficiency determines exposure time, achieving
a high signal-to-noise ratio in wavefront measurements
relies primarily on interference fringe contrast. High
contrast, guaranteed by balancing the intensities of the test
and reference beams, requires special consideration in the
PS/PDI. The potentially severe loss of flux from spatial
filtering in the image plane can create a significant imbal-
ance of power between the test and reference beams.

To alleviate the imbalance, several PS/PDI efficiency
improvements have been proposed or demonstrated. The
intrinsic power difference between adjacent diffraction
orders of a grating beam splitter gives the test and reference
beams different intensities in the image plane. This fact
creates an opportunity to control their relative intensities.
For example, the loss incurred by transmission through the
reference pinhole can be compensated by selecting the
stronger of two beams (typically the zeroth-order) as the
reference beam. Under this principle, gratings designed
with high duty-cycles (ratio of transparent to opaque areas)
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Figure 1. Schematic optical design of the phase-shifting point
diffraction interferometer. Two different image-plane masks are
shown.



can be tailored to match the two beam intensities as desired
[14]. The higher duty-cycle also improves the efficiency of
the interferometer.

3.2 Mask design
As described above, the PS/PDI image-plane mask trans-
mits the test beam through a relatively large window,
spatially filters the reference beam with a small pinhole,
and blocks all other orders from the grating beam splitter.
Designing a mask to satisfy these three criteria affords a
great deal of freedom. Among the free parameters are the
window’s size and shape, and the pinhole-to-window sepa-
ration. Examples of three PS/PDI mask designs are shown
in Fig. 2.

Although it should be designed many times larger than
the diffraction-limited focal spot size, the window nonethe-
less acts as a spatial filter: its size determines the highest
spatial frequencies and the degree of wavefront curvature
preserved in the test beam.

When properly configured, the mask should be
designed for the test beam to pass through the center of the
window when the reference beam is aligned on the refer-
ence pinhole. The distance from the pinhole to the
window’s center (equivalent to the beam-separation
distance) should be chosen large enough to minimize over-
lapping of the adjacent beams. Of particular concern is the
transmission, or leakage, of unwanted light through the
open window. Although the other beams are displaced from
the test beam’s window, the window behaves as a bandpass
filter and transmits high-spatial-frequency components
from the nearby beams. If not properly filtered, these
components can create confusion in the fringe analysis [15].

Beam overlap constrains the window size only in the
direction of beam separation. In principle, there is no limit
to the length of the window in the orthogonal direction; one
advantage of extending the window’s length is an increase
in spatial-frequency resolution in that direction [16]. This
point is discussed in Section 6.

In the original design of the PS/PDI [13, 17], a square
window was used with a beam separation equal to the
window’s width. A slightly more restrictive window-size
prescription has recently been introduced to improve the

noise-immunity of the interferometer. In order to guarantee
the Fourier spatial-frequency-domain separability of the
test and reference beams, the dual-domain configuration
requires that the window width not exceed two-thirds of the
beam-separation distance [15].

3.3 Grating pitch and placement

The PS/PDI offers considerable latitude in the position of
the grating beam splitter. The beam splitter may be placed
between the object plane and the test optic, between the test
optic and the image plane, or ahead of the object plane.
These positions are illustrated in Fig. 2. The first two con-
figurations are very similar in efficiency and operation. The
third configuration requires that similar window/pinhole
masks be placed in both the object and image planes. In this
special case, the test and reference beams are separated in
advance of the object plane. The test beam is spatially
filtered in the object plane, while the reference beam is
spatially filtered in the image plane. The windows transmit
the unfiltered beams through the object and image planes,
respectively. By filtering the reference beam only once,
rather than twice, the efficiency of this configuration can be
higher than in conventional PS/PDI designs. However,
since successful implementation requires that the test and
reference beams be fully separable in the object plane, this
arrangement is limited to situations in which the illuminating
beam can form a high-quality point image.
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Figure 3. The grating beam splitter may occupy a range of posi-
tions, with advantages and disadvantages to each. Positions
shown in (a) and (b) have identical efficiency considerations. (c)
affords much higher efficiency but requires beam separability in
the object plane.

Figure 2. Three image-plane mask designs. (a) The original design
with equal window width and beam separation. The second pin-
hole allows rotation of the beam separation direction. (b) Reduced
window size minimizes beam overlap. (c) Window elongation
extends the mid-spatial-frequency response in one direction.



Within each configuration, a range of positions is
available to the grating. It is easily shown that, independent
of the illumination wavelength, the number of grating lines
illuminated within the NA of interest is equivalent to the
number of fringes that appear in the measured interference
pattern [16]. Once a desired beam-separation distance is
chosen for the image plane, the grating’s pitch and its
distance from one of the conjugate planes become depen-
dent parameters, linked by a constant ratio.

In some cases, the grating pitch and position may be
limited by the shear angle between the test and reference
beams. The shear angle varies only with the pitch of the
grating and the wavelength. If the grating is placed very
close to one of the conjugate planes, then the pitch must be
reduced to compensate, and the resultant increase in the
shear angle may reduce the useful overlap of the beams.

Here  it is essential to recognize that the spherical qual-
ity of pinhole-diffracted beams decreases with the solid
angle under consideration. That is, diffracted wavefronts
have arbitrary quality over only a finite angular range.
When the shear angle is large relative to the beam diver-
gence, reference-wave quality may be compromised. It is
therefore advisable in practice to restrict the shear angle to
a small fraction of the illumination angle.

3.4 Beam alignment and position control
The most challenging aspect of using the PS/PDI is the
requisite pinhole alignment in the object and image planes.
Today’s diffraction-limited lithographic optics are designed
to produce beam profiles on the order of 100–200 nm
across. Testing these systems requires the fabrication and
control of sub-100-nm pinholes with sub-50-nm position-
ing. Coupled with millimeter-scale translation require-
ments, this level of precision and control places strict
demands on stage motion and measurement.

4. Compensable systematic errors

In pursuit of the highest attainable accuracy, it is essential
that every element of the interferometer, including the
measurement geometry, be considered as a potential source
of systematic errors. By definition, systematic errors are
those that can be removed after an appropriate calibration (if
available) is performed. This section contains a mathematical
description of the most significant systematic error sources
affecting the PS/PDI. Errors related to the path-length differ-
ence in the measurement geometry are additive and, once
understood, can be subtracted. Errors related to the
detection geometry must be compensated mathematically.

Not discussed in this article are random error sources
(from vibration, e.g.), errors related to inadequate pinhole
spatial filtering, or errors related to the detection of the
interference pattern and the subsequent fringe-pattern
analysis. These and many other sources of measurement

uncertainty are shared by most interferometers and do not
warrant special coverage here.

4.1 Alignment
Common to all interferometers but worth mention is the
importance of alignment. Any optical design has some
tolerance to the location of the conjugate object and image
points in imaging or wavefront measurement. Yet even with
the individual elements of a compound system placed in
perfect relative alignment, mislocation of the measurement
points will introduce an apparent systematic error. A
system’s tolerance to conjugate point location is what
defines its field of view. To ensure the usefulness of inter-
ferometry, great effort must be made to ensure that an optic
is measured in the same way it is used.

4.2 Uniform coordinate system
To facilitate the analyses presented in this chapter, a uni-
form set of coordinates will be used, as shown in Fig. 4. We
place the origin at one of the conjugate points; this is the
test beam’s center of curvature. The beam propagates with
its central ray coincident with the z-axis. The cylindrically
symmetric cone of rays subtending the NA has a half-angle
α such that NA ≡ sin α. Because the tangent of α is also
used, we define t ≡ tanα. θ is the spherical polar coordinate
defined from the z-axis.

Lateral displacement from the optic axis is defined by
the cylindrical polar coordinate vector r, defined as
r ≡ (r cosφ, r sinφ). In the image plane, where the test and
reference beams are focused, the beam-separation vector s
is defined as s ≡ (s cosφs, s sinφs).
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Figure 4. Coordinate systems used in the systematic error analy-
ses, shown from the image plane to the detector. The origin is
defined at the test beam focus in the image plane, and the z-axis
is coincident with the central ray. The displaced reference pinhole
is located at s in the image plane. The distance from the origin to
the detector along the central ray is z.



4.3 Zernike polynomials
The final step in the analysis of a systematic error is repre-
sentation in terms of the Zernike polynomials, defined on
the unit circle [18, 19, 20]. For this step, we define a polar
coordinate pair (ρ, φ), where the normalized radius ρ is
related to the scalar r by ρ ≡ r/rmax. It should be clear from
the geometry that rmax = zt.

There are many conventions available for the represen-
tation of the Zernike polynomials. These conventions most
commonly differ in the sequence and the values of the lead-
ing coefficients. We will work with the orthogonal Zernike
set {Zn ≡ Zn(ρ, φ)} bounded on the range [-1, 1], and
defined as follows. The named, lowest-ordered aberration
terms are piston, tilt, defocus, astigmatism, coma, spherical
aberration, and triangular astigmatism.

4.4 Geometric coma
The image-plane separation of the test and reference beams
generates a wavefront tilt that is responsible for the charac-
teristic pattern of parallel fringes in PS/PDI interferograms.
Independent of optical aberrations that may be present in
the test optic, consideration of the path-length difference
reveals a series of higher-ordered coma components that are
referred to as the geometric coma. The magnitude of coma
varies linearly with the image-plane beam separation s and
with the third-power of the NA. In this section, an expres-
sion for the coma is introduced and two solutions for its
removal are proposed.

The detector is located a distance z from the image
plane. A measurement point P in the detector plane is
represented by the position r. Defining l1 as the distance
from the origin to P, and l2 as the distance from the refer-
ence beam center to P, we have

. (1)

In addition to aberrations in the test beam, the geometric
path-length difference ∆l produces the interference pattern.
Expanding the difference ∆l = l1 – l2 up to third order in r and
to first order in s yields the first higher-ordered correction,

. (2)

Using the substitution r = tzρ, we can insert the Zernike

polynomials for tilt and coma:

. (3)

Alone, the path-length difference attributable to the
geometric coma ∆lgeom is

. (4)

The tilt and coma coefficients are linked by a constant
relationship dependent only on t. Using C and T as the coma
and tilt coefficients, respectively, we can write

. (5)

This relationship holds for both of the paired components of
the tilt and coma simultaneously.

This known proportionality can be exploited to
identify and remove the geometric coma. If the NA is
precisely known (and hence t as well), then the coma can be
inferred from the measured tilt. When the NA is not well
known, a solution cannot be deduced from a single
measurement; two or more measurements are required.
Notice that the coma and tilt terms are proportional to and
aligned with the beam-separation vector s. Therefore, by
using a combination of different beam-separation
magnitudes or directions, the underlying “true” wavefront
can be separated from the geometric coma effect [16].
Enabling this measurement is one purpose of the
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Figure 5. The magnitude of the geometric coma systematic error
varies with the beam separation s and approximately with NA3.
Shown are Zernike coma coefficient magnitudes for NA values
between 0.1 and 0.8 with a range of reasonable beam separations.
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two-reference-pinhole configuration of the PS/PDI image-
plane mask.

In Fig. 5, the Zernike coefficient magnitude of the geo-
metric coma error is shown for a range of numerical aper-
tures and beam separations. Based on the measurement
geometry alone, these coefficient magnitudes are indepen-
dent of the illuminating wavelength.

4.5 Grating coma
Another potentially significant systematic error at moderate
NA comes from the use of a planar grating beam splitter in
a spherically diverging or converging beam. Since the
angles of incidence vary across the illuminated region of
the grating, a small phase error is introduced into the dif-
fracted beams. In a geometric description, the grating pitch
appears reduced to the off-axis rays perpendicular to the
grating rulings. This leads to a variation in the grating’s dif-
fraction angle within the cone of the beam, referred to as the
grating coma.

Since the grating coma affects only diffracted orders
from the grating beam splitter, and not the zeroth-order
beam, this error source can be eliminated completely. By
using the first-order beam as the reference beam, any coma
introduced into the reference wave will be spatially filtered
and removed. However, owing to concerns about the effi-
ciency of the interferometer it is usually disadvantageous to
use the first-order beam as the reference.

We derive an expression for this systematic error using
Babinet’s principle [21], treating the grating diffraction as
an inverse problem. That is, given a spherical illuminating
wavefront incident on a grating of pitch d, we determine the
aspherical phase of a second wavefront that could interfere
with the first to produce the uniform-pitch grating pattern.

We can solve the problem in a general manner without
regard to whether the incident beams are converging or
diverging: we define the path-length R(θ, φ) from the source
point to an arbitrary point on the grating. k is the wavevector
of the illumination, k ≡ 2π/λ, and κ is a wavevector describing
the grating, κ ≡ 2π/d, aligned in an arbitrary direction. The
appropriate Zernike polynomial representation for wave-
front aberrations is the spherical coordinate system of the
beam, not a circle in a plane. Once an expression for the
unknown phase is derived, the normalized polar angle will
take the place of the radial parameter ρ.

Using θ as the polar angle from the source to the point
on the grating, φ as the azimuthal angle about the central
ray, and φs as the grating orientation, an expression for the
unknown phase Φ may be written as follows:

. (6)

The grating angle φs, defined normal to the rulings, both
determines and is parallel to the beam-separation vector s.

Dividing through by k, the corresponding path-length
difference ∆l is

. (7)

Expanding tan θ as a power series helps to separate the
relevant components of the unknown wavefront. For con-
venience, θ can be replaced by a dimensionless polar, or
radial parameter, ρ, defined as ρ ≡ θ/α;

. (8)

Keeping terms up through ρ3, the path-length difference
includes the same spherical component as the original
wave, R, plus a linear tilt component related to the grating
diffraction “shear” angle. Based on the grating shear angle
λ/d, the coefficient λz/d is equivalent to the beam separa-
tion s′ in the conjugate plane nearest the grating. If this is
the image plane, then s′ ≡ s; for the object plane, s′ is related
to s by the magnification m, s′ ≡ s/m. Neglecting the tilt
contribution, define the interesting coma term ∆lgrat as

. (9)

4.6 Detector tilt or mask-plane tilt
In the absence of re-imaging optics, misalignment of the
detector from a plane normal to the central ray can intro-
duce a systematic astigmatic error into the wavefront
measurement. The magnitude of this error is easily derived
following the arguments presented above for the path-
length difference between the test and reference beams.

With a constant z value, Eq. 2 expresses the path-length
difference when the detector is aligned normal to the
central ray. By allowing z to vary with r and φ, describing
the detector’s tilted plane, the same expression reveals the
path-length difference we seek.

An expression for the detector plane, tilted by a small
angle τ in an azimuthal direction defined by φτ is

. (10)

z0 is the distance from the origin to the detector along the
central ray. Equation 10 is inserted into Eq. 2 to derive the
new path-length difference ∆l′. The original path-length
difference ∆l is subtracted from ∆l′ to isolate the detector-
tilt astigmatism ∆ltilt. As before, we consider terms up
through third-order in r and first-order in s. 
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.(11)

Substituting the normalized radius ρ = r/tz, Eq. 11 can be
written in terms of astigmatism and defocus with piston:

. (12)

The magnitude of the systematic error depends on the
direction of the tilt (φτ) relative to the beam-separation
direction (φs); the error is zero if the detector is tilted about
an axis parallel to the beam separation s.

4.7 Radial distortion
In the absence of re-imaging optics, the diverging spherical
test and reference beams are recorded by a planar detector.
In this geometry, the varying solid angle of the detector
array introduces a systematic radial distortion. Unlike the
systematic errors described above, this radial distortion
does not arise from a path-length difference between the
test and reference beams. Correcting this distortion, which
is very small at low NA values, requires a non-linear adjust-
ment of the radial parameter used in the wavefront analysis.

The radial distortion can be described mathematically
via the projection of the spherical coordinate system onto
the plane of the detector. Here, the polar angle of a ray in
the beam becomes a radial distance from the origin. The
wavefront analysis is ultimately performed on a “unit
circle” domain in a normalized coordinate system based on
the detector array. In this way, rays at the outermost edge of
the NA coincide with a unit radius, and the central ray occu-
pies the origin of both coordinate systems.

As before, the distance from the coordinate origin to
the detector plane is z, θ is the polar angle, and α is the
maximum half-angle within the NA. In the plane of the
detector, the normalized radius ρ is related to the spherical
coordinate system by

. (13)

Inverting this expression gives θ in terms of the measured
coordinate ρ. To facilitate distortion analysis, it is useful to
also normalize the polar angle, dividing it by α. The trans-
formed radial coordinate is ρ′.

. (14)

Incorporating this transformation into the wavefront
analysis before wavefront fitting to Zernike polynomials is
important when the radial distortion is large enough to
induce a shear error. Between the two normalized coordi-
nate systems (that of the spherical beam, and that of the
measurement), the normalized distortion ∆ can be
expressed as a function of r:

. (15)

By definition, these two coordinate systems coincide at the
unit radius and at the origin (the distortion is zero at these
points). The maximum distortion occurs near ρ equal to 0.5.
Values for the peak distortion as a function of NA are
plotted in Fig. 6.

4.8 Null test interferometer calibration
The PS/PDI systematic errors described in this chapter are
as compensable as they are measurable—except for the
radial distortion, which must be removed empirically in the
wavefront analysis. Each of the error sources described in
Sections 4.4–4.6 depends linearly on the magnitude and
direction of beam separation. This fact enables multiple
measurements to be combined to isolate the systematic
errors attributable to the measurement geometry. While
reducing the beam separation does minimize these path-
length difference errors, it may not be possible to success-
fully operate the interferometer with beam separations
below approximately 20λ/NA.

An experimental method, the two-pinhole null test, has
been developed to measure the magnitudes of systematic
errors and calibrate the PS/PDI [16, 22, 23]. The null test
replaces the image-plane mask window with a second
reference pinhole, in a configuration similar to Young’s
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Figure 6. Projection of a spherical beam onto a planar detector
causes a radial distortion between the two coordinate systems.
The normalized magnitude of the peak radial distortion is shown
for a range of NA values.



two-slit experiment. In this way, the interference of two
spherical waves is used to simultaneously calibrate the
interferometer and probe random error magnitudes.

The null test configuration has been used in the EUV
PS/PDI to study the relationship between pinhole size and
the quality of the reference wavefront [23]. Additional tests
have established beam-alignment tolerances and the
opacity of the mask’s absorber layer required for adequate
spatial filtering.

A typical EUV null test interference pattern is shown in
Fig. 7. This pattern was recorded with the EUV PS/PDI
configured for the measurement of a 10× Schwarzschild
objective. With tilt removed, the geometric coma systemat-
ic error is the largest component of the measured wavefront.
The Zernike coma coefficient magnitude was 0.415 ± 0.013
nm, within 0.005 nm of its expected value.

4.9 Chromatic properties
One special property of the PS/PDI is its ability to function
in the presence of moderately broadband illumination.
From a given grating beam splitter position and pitch, the
image-plane beam separation is proportional to the wave-
length. The fringe density in the detector plane is propor-
tional to the beam separation, and is inversely proportional
to the wavelength. In measuring an ideal achromatic
system, these two effects balance each other, generating the
same fringe pattern for each wavelength component of the
illumination.

The selection of the grating beam splitter’s zeroth or
first order as the reference beam affects the interferometer’s
chromatic properties. As stated above, wavelength deter-
mines the lateral beam separation in the image plane where
the test and reference beams are separated. Specifically, the
positions of the zeroth-order foci are the same for each
wavelength component, while those of the first order shift
with wavelength. In the presence of moderate bandwidth
illumination, the first-order foci occupy a range of positions
rather than just one point. This is represented in Fig. 8.

If the zeroth-order beam is selected as the reference
beam and the reference pinhole is placed at the zeroth-order
focus, then the window will transmit a range of first-order
wavelength components. On the other hand, if the reference
beam is selected from the first-order, then the reference
pinhole functions as a monochromator, transmitting the
different wavelength components with varying efficiency
depending on their focal positions. In the latter case, the test
and reference beams may have different chromatic content,
thereby reducing the interference fringe contrast. Fringe
contrast can be maintained by using the zeroth order as the
reference beam.

In the presence of aberrations, chromatic or otherwise,
the wavelength independence of the fringe pattern is broken.
While the overall fringe density in the pattern of parallel
fringes is constant, the aberration-dependent displacement of
the fringes is not. The observed pattern represents the inco-
herent addition of the available wavelength components.

For example, consider an achromatic aberration on a
mirror’s surface. A localized deviation in the surface figure
by height h induces a relative shift in the interference fringe
position of h/λ waves. Here, the deviation of the fringes is
a wavelength-dependent effect. Yet if the illumination
bandwidth is relatively narrow, the intensity distribution is
symmetric about a central wavelength, and the detector
response is constant over the wavelength range, then it can
be shown that the observed fringe pattern is equivalent to
the pattern formed by the central wavelength, with a
reduced fringe contrast [16].
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Figure 7. Null test interference pattern from two 100-nm pinholes.
Recorded at 13.4-nm wavelength, 0.094 NA (based on the center
to edge angle). The detector area is one-square-inch. [From
P. Naulleau, et al., Ref. 23]

Figure 8. In the presence of moderate bandwidth the positions of
first order foci vary with wavelength. This figure illustrates the
different chromatic filtering properties of selecting the zeroth or
first order as the reference beam. The beams propagate from left
to right, and the opaque mask is represented in black. A small,
lateral mask translation switches between the two configurations.



5. Interferometry

The prototype PS/PDI, developed for the measurement of
EUV optics, has been in use since 1996. It uses light from
an undulator beamline at the Advanced Light Source at
Lawrence Berkeley National Laboratory (LBNL). This
work is conducted by members of LBNL’s Center for
X-Ray Optics, including the author. 

To date, five separate 10× Schwarzschild objectives
have been studied; two recent wavefront measurements are
reported in Fig. 9. These optics, built as part of the ongoing
research effort in EUV lithography, demonstrate the fabri-
cation and alignment capabilities that have been achieved.
The design specification for the wavefront of these optics is
0.67 nm.

Although PS/PDI wavefront measurements are limited
to very high-quality optical systems, and the tolerance on
the pinhole positions is beyond the resolution of the optics,
the initial alignment of the interferometer’s image-plane
mask is not difficult. In one strategy, the grating beam split-
ter is removed and the window is first centered on the test
beam. As the mask is translated longitudinally to reach the
image plane, the window’s edge is used to perform rapid
knife-edge beam-width measurements.

5.1 Limitations for large aberrations
The extreme sensitivity and high accuracy of the PS/PDI
come at the cost of dynamic range. The interferometer relies
on the point-to-point imaging properties of the system under
test to produce reference wavefronts of sufficient intensity.
If the test optic cannot produce a well-defined point image,
the limited size of the window may clip the test beam and
the spatial filtering of the reference beam may reduce the

contrast of the interference fringes beyond visibility. In
general, the reference pinhole must be placed in or near the
bright central lobe of the reference beam focal point.

Where significant higher-order aberrations are present,
other measurement strategies must be employed. For
instance, during the alignment of a compound optical
system, interferometry could be performed as a sequential
combination of measurements with increasing sensitivity:
Foucault knife-edge testing, Ronchi or lateral shearing
interferometry, and finally PS/PDI measurements.

For the measurement of mildly aspherical or single-
element EUV optics, it may be possible to operate the inter-
ferometer at conjugate points where point images are
formed. A less attractive but potentially viable solution is
the incorporation of holographic elements, such as comput-
er-generated holograms (CGH), to null aspherical compo-
nents of the test wavefront [25]. However, a CGH behaves
as an additional reference element, requiring characterization;
and to some extent this undoes the benefits of the point-dif-
fraction method of reference wavefront generation. 

6. Other applications

The PS/PDI configuration can be used for more than inter-
ferometry. With only minor modifications the system is
well-suited to the study of optical system characteristics
which are of particular interest to EUV lithography: reflec-
tivity, chromatic properties, and flare. These modifications
are described in this section.

Using two calibrated photo detectors, the total trans-
mission, or throughput, of the test optic can be character-
ized. These detectors are usually already required in the
design of the interferometer. One detector follows the
object plane and is required for the location and adjustment
of the object pinhole; the second is the CCD detector, which
is used to record interference patterns. While the integrated
CCD signal yields the total throughput of the system,
spatially resolved information is also available.

Where it is possible to tune the illuminating wave-
length (using a monochromator and a broadband, or
tunable, EUV source, such as a synchrotron), the combined
properties of several reflective multilayer coatings can be
studied. These system-level tests have been used to
measure the transmission bandwidth and peak-reflectivity
wavelength, and to identify defects that are not observable
with visible light alone. For example, wavefront measure-
ments performed over a range of wavelengths have been
used to study chromatic aberrations in a two-mirror EUV
objective. [26]

Another parameter of great concern for lithography is
flare, the undesired distribution of power in the vicinity
(within a few microns) of bright image features. Flare is
caused by mid- and high-spatial-frequency roughness in
optical substrates or coatings. As a result of the short
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Figure 9. Measured wavefronts from two EUV 10×
Schwarzschild objectives fabricated for research in EUV
lithography. Recorded by the PS/PDI at 13.4-nm wavelength, with
an off-axis, 0.088 NA. The design specification for the wavefront
error is 0.67 nm rms. Rays closest to the optic axis are clipped.
Grey levels are separated by 0.5 nm. [From K. A. Goldberg, et al.,
Ref. 24.]



wavelength of EUV light compared with wavelengths used
in today’s optical lithography (248 nm, 193 nm, etc.), EUV
systems are more susceptible to flare. For this reason, dur-
ing fabrication great emphasis is placed on the finish as
well as the figure of optical substrates used as EUV mirrors.

While imaging provides the ultimate measurement of
flare, the PS/PDI enables at least two different system-level
flare tests. The mid-spatial-frequency range of optical aber-
rations, the range most important to flare, is the most diffi-
cult to measure. In collaboration with other at-wavelength
and auxiliary flare measuring techniques performed on the
individual optical elements (white-light interferometry,
EUV scatterometry [27], atomic-force microscopy, etc.) the
PS/PDI tests fill in this important range of power spectral
density (PSD) measurement.

One PS/PDI flare measurement is similar to a knife-
edge test, and can be performed with a minor modification
to the PS/PDI image-plane mask [28]. From a single point
object, the power radiated into the field of view is measured
using a detector and an appropriately-sized large window in
the image plane. Measurements are made as the window’s
edge is translated across the focused beam. Analysis reveals
the position-dependent fraction of the total power that falls
outside of the focused beam.

A second at-wavelength flare measurement technique
uses elongated image-plane mask windows to extend the
spatial-frequency resolution of the PS/PDI into the range of
mid-spatial-frequencies [28]. The point-spread function
(PSF) of the optic can be measured interferometrically as
part of the standard wavefront measurements. The flare can
be predicted by combining these low- and mid-spatial-
frequency PSF measurements with the high-frequency
power spectrum measured in other ways.

7. Future directions

In use for several years, and successfully applied to the
measurement of several prototype EUV lithographic optics,
the PS/PDI has demonstrated its usefulness, its accuracy,
and its potential. Undoubtedly, the most significant chal-
lenges await the development of optical systems not yet
conceived. With higher numerical aperture and shorter
wavelength, the extension of diffraction-based interfero-
metric techniques is not guaranteed.

For application in large-scale production environ-
ments, and where source brightness limits the coherent
EUV power available to interferometry, the role of at-wave-
length testing, and point diffraction interferometry in
particular, must be carefully studied. In collaboration with
other techniques, the PS/PDI may become an essential tool;
or it may be relegated to the role of gold standard used in
the calibration of other interferometries. Alternatively, it
may be applied in the development of reference optics that
are used in other testing strategies.
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